Using the CATH domain database to assign structures and functions to the genome sequences.
نویسندگان
چکیده
The CATH database of protein structures contains approximately 18000 domains organized according to their (C)lass, (A)rchitecture, (T)opology and (H)omologous superfamily. Relationships between evolutionary related structures (homologues) within the database have been used to test the sensitivity of various sequence search methods in order to identify relatives in Genbank and other sequence databases. Subsequent application of the most sensitive and efficient algorithms, gapped blast and the profile based method, Position Specific Iterated Basic Local Alignment Tool (PSI-BLAST), could be used to assign structural data to between 22 and 36 % of microbial genomes in order to improve functional annotation and enhance understanding of biological mechanism. However, on a cautionary note, an analysis of functional conservation within fold groups and homologous superfamilies in the CATH database, revealed that whilst function was conserved in nearly 55% of enzyme families, function had diverged considerably, in some highly populated families. In these families, functional properties should be inherited far more cautiously and the probable effects of substitutions in key functional residues carefully assessed.
منابع مشابه
The CATH Domain Structure Database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis
The CATH database of protein domain structures (http://www.biochem.ucl.ac.uk/bsm/cath/) currently contains 43,229 domains classified into 1467 superfamilies and 5107 sequence families. Each structural family is expanded with sequence relatives from GenBank and completed genomes, using a variety of efficient sequence search protocols and reliable thresholds. This extended CATH protein family dat...
متن کاملAssessing strategies for improved superfamily recognition.
There are more than 200 completed genomes and over 1 million nonredundant sequences in public repositories. Although the structural data are more sparse (approximately 13,000 nonredundant structures solved to date), several powerful sequence-based methodologies now allow these structures to be mapped onto related regions in a significant proportion of genome sequences. We review a number of pub...
متن کاملThe CATH extended protein-family database: providing structural annotations for genome sequences.
An automatic sequence search and analysis protocol (DomainFinder) based on PSI-BLAST and IMPALA, and using conservative thresholds, has been developed for reliably integrating gene sequences from GenBank into their respective structural families within the CATH domain database (http://www.biochem.ucl.ac.uk/bsm/cath_new). DomainFinder assigns a new gene sequence to a CATH homologous superfamily ...
متن کاملThe history of the CATH structural classification of protein domains
This article presents a historical review of the protein structure classification database CATH. Together with the SCOP database, CATH remains comprehensive and reasonably up-to-date with the now more than 100,000 protein structures in the PDB. We review the expansion of the CATH and SCOP resources to capture predicted domain structures in the genome sequence data and to provide information on ...
متن کاملGene3D: a domain-based resource for comparative genomics, functional annotation and protein network analysis
Gene3D http://gene3d.biochem.ucl.ac.uk is a comprehensive database of protein domain assignments for sequences from the major sequence databases. Domains are directly mapped from structures in the CATH database or predicted using a library of representative profile HMMs derived from CATH superfamilies. As previously described, Gene3D integrates many other protein family and function databases. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 28 2 شماره
صفحات -
تاریخ انتشار 2000